4,132 research outputs found

    Children\u27s TV Commercials: A Review of Research

    Get PDF

    Revisiting Cosmic No-Hair Theorem for Inflationary Settings

    Full text link
    In this work we revisit Wald's cosmic no-hair theorem in the context of accelerating Bianchi cosmologies for a generic cosmic fluid with non-vanishing anisotropic stress tensor and when the fluid energy momentum tensor is of the form of a cosmological constant term plus a piece which does not respect strong or dominant energy conditions. Such a fluid is the one appearing in inflationary models. We show that for such a system anisotropy may grow, in contrast to the cosmic no-hair conjecture. In particular, for a generic inflationary model we show that there is an upper bound on the growth of anisotropy. For slow-roll inflationary models our analysis can be refined further and the upper bound is found to be of the order of slow-roll parameters. We examine our general discussions and our extension of Wald's theorem for three classes of slow-roll inflationary models, generic multi-scalar field driven models, anisotropic models involving U(1) gauge fields and the gauge-flation scenario.Comment: 21 pp, 4 .eps figure

    COVID-19 must catalyse key global natural experiments

    Get PDF

    Temperature-induced pair correlations in clusters and nuclei

    Get PDF
    The pair correlations in mesoscopic systems such as nmnm-size superconducting clusters and nuclei are studied at finite temperature for the canonical ensemble of fermions in model spaces with a fixed particle number: i) a degenerate spherical shell (strong coupling limit), ii) an equidistantly spaced deformed shell (weak coupling limit). It is shown that after the destruction of the pair correlations at T=0 by a strong magnetic field or rapid rotation, heating can bring them back. This phenomenon is a consequence of the fixed number of fermions in the canonical ensemble

    Effective Feature Selection for Feature Possessing Group Structure

    Get PDF
    Feature selection has become an interesting research topic in recent years. It is an effective method to tackle the data with high dimension. The underlying structure has been ignored by the previous feature selection method and it determines the feature individually. Considering this we focus on the problem where feature possess some group structure. To solve this problem we present group feature selection method at group level to execute feature selection. Its objective is to execute the feature selection in within the group and between the group of features that select discriminative features and remove redundant features to obtain optimal subset. We demonstrate our method on data sets and perform the task to achieve classification accuracy

    Black Hole Statistics from Holography

    Full text link
    We study the microstates of the ``small'' black hole in the \half-BPS sector of AdS5×S5_5\times S^5, the superstar of Myers and Tafjord, using the powerful holographic description provided by LLM. The system demonstrates the inherently statistical nature of black holes, with the geometry of Myer and Tafjord emerging only after averaging over an ensemble of geometries. The individual microstate geometries differ in the highly non-trivial topology of a quantum foam at their core, and the entropy can be understood as a partition of NN units of flux among 5-cycles, as required by flux quantization. While the system offers confirmation of the most controversial aspect of Mathur and Lunin's recent ``fuzzball'' proposal, we see signs of a discrepancy in interpreting its details.Comment: 21 pages, 4 figures; References adde

    An Arena for Model Building in the Cohen-Glashow Very Special Relativity

    Full text link
    The Cohen-Glashow Very Special Relativity (VSR) algebra [arXiv:hep-ph/0601236] is defined as the part of the Lorentz algebra which upon addition of CP or T invariance enhances to the full Lorentz group, plus the space-time translations. We show that noncommutative space-time, in particular noncommutative Moyal plane, with light-like noncommutativity provides a robust mathematical setting for quantum field theories which are VSR invariant and hence set the stage for building VSR invariant particle physics models. In our setting the VSR invariant theories are specified with a single deformation parameter, the noncommutativity scale \Lambda_{NC}. Preliminary analysis with the available data leads to \Lambda_{NC}\gtrsim 1-10 TeV. This note is prepared for the Proceedings of the G27 Mathematical Physics Conference, Yerevan 2008, and is based on arXiv:0806.3699[hep-th].Comment: Presented by M.M.Sh-J. in the G27 Mathematical Physics Conference, Yerevan 2008 as the 4th Weyl Prize Ceremony Tal
    • …
    corecore